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Abstract

The three-dimensional exposure method for the detection of the boundary of a set of overlapping spheres is presented.
Like the two-dimensional version described in a previous paper, the three-dimensional algorithm precisely detects void
opening or closure, and is optimally suited to the kernel-mediated interactions of smoothed-particle hydrodynamics,
although it may be used in any application involving sets of overlapping spheres. The principle idea is to apply the
two-dimensional method, on the surface of each candidate boundary sphere, to the circles of intersection with neighboring
spheres. As the algorithm finds the exact solution, the quality of detection is independent of particle configuration, in con-
trast to gradient-based techniques. The observed CPU execution times scale as O(MN�), where M is the number of par-
ticles, N is the average number of neighbors of a particle, and � is a problem-dependent constant between 1.6 and 1.7.
The time required per particle is comparable to the amount of time required to evaluate a three-dimensional linear mov-
ing-least-squares interpolant at a single point.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In recent years there has been much development of meshfree methods for computational mechanics.
Among these are the smoothed-particle hydrodynamics (SPH) [1,2], element-free Galerkin (EFG) [3], repro-
ducing kernel particle method (RKPM) [4], and moving-least-squares-particle hydrodynamics (MLSPH) [5,6]
methods. Common to all of these is the replacement of a conventional mesh composed of non-overlapping
cells, zones or elements with a scattered set of overlapping disks or spheres, each supporting a kernel function
for local weighting of information. We refer to such a disk or sphere as a ‘‘particle’’, and the broad class of
‘‘meshfree’’ methods as particle methods, in deference to the original meshfree method, SPH.
0021-9991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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Particle methods have a natural advantage over meshed methods for problems in which topologically dis-
continuous deformations such as void creation and collapse, fracture, spallation, fragmentation, splashing
and folding occur. Finite difference or finite element methods need expensive finely-resolved meshes to cap-
ture the detail of these dynamic phenomena. On the other hand, implementation of boundary conditions is
not so clear-cut with particle methods as it is with meshed methods. One must first locate the points that
comprise the boundary. With meshed methods, this is straightforward, but with meshfree methods, it is
problematic.

Randles and Libersky [2] have suggested using the sums of the gradients of SPH kernels. Ideally, these ker-
nel gradients sum to zero for interior particles. Any particle for which the sum of the kernels is not zero is
presumably an exterior particle. This method gives correct results when the particles are uniformly spaced,
but for non-uniform spacing the kernel sums are far from ideal, even unpredictable, and a useful specification
of the trigger level for boundary detection remains elusive. Furthermore, if the SPH kernels are corrected as in
MLS so that the interior kernel gradient sums are exactly zero in the interior [5], the correction spills over the
boundary a little bit, and boundary particles are indistinguishable from interior particles.

Dilts [6] has proposed a purely geometric two-dimensional boundary detection algorithm, dubbed the
‘‘exposure method’’, such that in two-dimensions the ‘‘exact’’ boundary is always found. We draw a circle
of radius hi for each particle i, where hi is the smoothing length of the kernel centered at particle i. The circle
associated with particle i will simply be referred to as circle i. Assume that the neighbors of every particle have
been predetermined by one of the usual techniques (KD tree, quad-tree, etc.) Now consider the neighbor par-
ticles of particle i and draw their corresponding circles. For every neighbor circle j that intersects circle i we
find the arc that circle j covers on circle i. If the union of the set of arcs from neighboring circles completely
covers circle i, then particle i is an interior particle. However, if circle i is not completely covered then particle i

is a boundary particle. The coverage is determined by applying a quick sort to left endpoints of the arcs, and
comparing the right endpoints of the sorted set. The operation count of this procedure is O(MNlogN), where
M is the number of particles and N is the average number of neighbors of a particle. For details, see Ref. [6].
The boundary so determined is ‘‘exact’’ because in SPH, typically symmetrized kernels yield pair interactions
that appear and disappear precisely when the radius-h circles touch or do not touch, respectively. The expo-
sure method finds exactly those particles which are not completely bathed in interacting neighbors. The expo-
sure boundary is ‘‘exact’’ also because it is precisely what would be seen if a physical model of the particle
configuration were constructed.

In this paper, we propose an extension of the two-dimensional algorithm of Dilts [6] to three dimensions. A
candidate boundary circle with a set of surface arcs created by intersections with neighboring circles is replaced
by a candidate boundary sphere with a set of surface circles created by intersections with neighboring spheres.
The chief idea is to apply the two-dimensional boundary detection scheme to the set of intersection circles on
the surface of the candidate boundary particle. If any arc of an intersection circle is exposed, then the candi-
date is a boundary sphere. This criterion produces a boundary identification exactly the same as would be
determined by looking at the outer surface of a three-dimensional physical model of the particle configuration.
The three-dimensional exposure method thus produces the exact solution to the problem.

2. Computational details

Let Si denote the sphere of radius hi (the particle’s smoothing length) centered at particle i. Assume as in the
two-dimensional case that all particle neighbors have been determined by some means. Let Cij denote the ori-
ented circle on sphere i given by the intersection of spheres Si and Sj. Note that Cij 6¼ Cji because these circles
are assigned a different orientation, as explained in Section 2.1. In words, the algorithm proceeds as follows:
sphere Si is intersected with all the neighboring spheres Sj and the circles of intersection Cij are drawn on
sphere Si. If these circles of intersection cover the surface of sphere Si, then particle Si is an interior particle.
If sphere Si is not completely covered, then particle Si is a boundary particle. The determination of when a
sphere is covered by a set of circles on its surface is not as simple as in the case of two-dimensional disks
and arcs. We describe below a technique to apply the two-dimensional exposure method of Dilts [6] to each
neighbor circle Cij on the surface of sphere Si. If any part of any neighbor circle Cij is exposed, then particle i is
a boundary particle. These ideas are illustrated in Fig. 1.



Fig. 1. Green circle represents candidate boundary sphere Si. Black arcs represent portions of neighboring spheres Sj. Circles of
intersection Cij are in blue. Red arcs are those portions of circles of intersection which are not covered. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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The following pseudo-code describes the high-level organization of the algorithm:

find_boundary_3D

loop over all particles i

loop j over neighbors of i
if Sj contains Si then

particle i is interior
continue with next i

end if

if Sj does not intersect Si then continue with next j

Cij = sphere_intersection(Si, Sj).
if Sj is a known interior particle then mark Cij covered.

end loop

check_sphere_coverage(Si)
end loop
check_sphere_coverage(Si)
if there are no circles on Si then

Si is a boundary particle
exit the algorithm.

end if

Sort the Cij by largest to smallest CðsÞij

loop over all circles j

Construct interaction list for Cij

Set Lij :¼ ½0; 2pÞ
end loop

loop over all circles j in sorted order
if Cij is covered then continue with next j

loop k over the interaction list of Cij

circle_intersection(Cik,Cij)
circle_intersection(Cij,Cik)
Remove Cij from the interaction list of Cik
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end loop

end loop

if for every j, Cij is covered then

Si is an interior particle
else

Si is a boundary particle
end if

circle_intersection(Cik,Cij)
if Cik is parallel to Cij then

if Cik covers Cij by relation 17 then

return covered
else

return uncovered
end if

end if

Determine number of points of intersection of Cik and Cij.
if there are 2 points of intersection then

Compute Aijk by Eq. (57)
Update Lij by Eq. (62)
if Lij ¼ ; then

return covered
else

return uncovered
end if

else

if Cik covers Cij by relation (17) then

return covered
else

return uncovered
end if

end if

The rest of this section will provide the mathematical details of the three major functions

sphere_intersection

check_sphere_coverage
circle_intersection

of this high-level description in more detail.

2.1. Intersection of two spheres

In computing the intersection of neighboring spheres Sj with the candidate boundary sphere Si, five possible
cases can arise. Let ri = (xi,yi,zi) be the center of sphere Si and likewise rj = (xj,yj,zj) is the center of Sj. Define

Dij r = rj � ri = ÆDijx,Dijy,Dijzæ, and Dij = iDijri, where kak ¼ khax; ay ; azik ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

x þ a2
y þ a2

z

q
denotes the euclid-

ean norm. The five cases are:

(1) Dij > hi + hj) Sj and Si do not intersect.
(2) hj P Dij + hi) Sj contains Si.
(3) hi P Dij + hj) Si contains Sj.
(4) Dij = hi + hj) Sj and Si intersect at one point.
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(5) Dij < hi + hj and —hi � hj— < Dij) Surfaces of Sj and Sj intersect at circle Cij.

Case 4, where the spheres intersect at one point, is considered the same as if there spheres did not intersect
because a single point of intersection covers no area on the surface of a sphere. If the spheres intersect at more
than one point, then the following quantities associated with circle Cij from Fig. 2 are needed:
cos hij ¼
D2

ij þ h2
i � h2

j

2Dijhi
; ð1Þ

kij ¼
hi cos hij

Dij
: ð2Þ
The center, cij and radius, CðrÞij of Cij are found from
cij ¼ hcð1Þij ; c
ð2Þ
ij ; c

ð3Þ
ij i ¼ ri þ kijDijr; ð3Þ

CðrÞij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

i � ðhi cos hijÞ2
q

¼ hi sin hij: ð4Þ

These quantities are labeled in Fig. 2.

The circles of intersection lie on the surface of sphere Si and are not necessarily co-planar, as shown in
Fig. 4. It is useful to assign each circle an outward unit normal vector nij, and two unit axis vectors x̂ij and
ŷij (labeled in Fig. 3) in the following manner:
nij ¼
1

Dij
Dijr; ð5Þ

x̂ij ¼
x̂�nij

kx̂�nijk if ŷ� nij ¼ 0;

ŷ�nij

kŷ�nijk if ŷ� nij 6¼ 0;

8<: ð6Þ

ŷij ¼
nij � x̂ij

knij � x̂ijk
; ð7Þ
where x̂ and ŷ are the global unit vectors in positive X and Y directions, respectively.

2.2. Checking coverage of a sphere

After the all the circles of intersection Cij on sphere Si have been found, we determine if any are not fully
covered by a modified version of the 2D arc method from Ref. [6]. If so, then Si represents a boundary particle.
Fig. 2. Nomenclature for the intersection of two spheres.



Fig. 3. Local coordinate system for a circle on the surface of a sphere.
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If all the circles Cij for the sphere Si are covered, then sphere Si is covered and represents an interior particle. If
a sphere has no circles on it, then its corresponding particle is isolated and is thus a boundary particle.

The 2D arc method checks coverage of a given circle by seeing if the union of the arcs of intersection with
all the other circles on the surface of sphere Si contains the given circle. The efficiency of this process is
enhanced by borrowing an idea from Iwai et al. [7]. Before computing the circle intersections, we assign a size
CðsÞij to each circle, representing the angle subtended about the origin of Si, and sort the circles Cij by CðsÞij . By
considering the largest circles first we enhance the probability of completely covering up more circles early on.
Once a circle is determined to be covered, it is not required to compute any more intersections for it. Since
circle intersections are the expensive part of this algorithm, the overall cost is reduced by having to consider
fewer than the nominal N 2

i intersections, where Ni is the number of neighbors of Si. The angle CðsÞij estimates
how much of the surface of sphere i is covered by Cij and is given by:
CðsÞij ¼
tan�1 CðrÞij

kijDij

���� ���� if nij � dij > 0;

2p� tan�1 CðrÞij

kijDij

���� ���� if nij � dij 6 0;

8>>><>>>: ð8Þ
where dij = cij � ri.
We assign spherical coordinates to the surface of sphere Si by placing the poles at the points of minimum

and maximum global z coordinates. After sorting, for each circle Cij, an interaction list of circles that could
possibly intersect Cij is formed by searching for circles whose latitude–longitude bounding boxes overlap the
bounding box for Cij. This further reduces the total number of circle intersections to less than the nominal N 2

i .
The latitude and longitude of the circle centers are given by
latðCijÞ ¼ sin�1 cð3Þij � zi

kijDij

 !
; ð9Þ

lonðCijÞ ¼
0 if ðcð1Þij � xiÞ2 þ ðcð2Þij � yiÞ

2 ¼ 0;

cij if cð1Þij � xi P 0 and cð2Þij � yi 6¼ 0

2p� cij if cð1Þij � xi < 0

8>><>>: ; ð10Þ
where
cij ¼ cos�1
cð1Þij � xiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðcð1Þij � xiÞ2 þ ðcð2Þij � yiÞ
2

q
0B@

1CA: ð11Þ
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The latitude takes on values in [0,p] where 0 represents the south pole (minimum value of z) and p is at the
north pole (maximum value of z). The values for longitude are [0,2p). If the center of a circle is located at one
of the poles, then there is an ambiguity in its longitude which is removed by setting the value to zero.

The minimum and maximum values of latitude and longitude of all points on the circle Cij is given by
minlatðCijÞ ¼ max 0; latðCijÞ þ
p
2
� CðsÞij

n o
; ð12Þ

maxlatðCijÞ ¼ min p; latðCijÞ þ
p
2
þ CðsÞij

n o
; ð13Þ

minlonðCijÞ ¼
circðlonðCijÞ � CðsÞij Þ; latðCijÞP CðsÞij � p

2
;

0 otherwise;

(
ð14Þ

maxlonðCijÞ ¼
circðlonðCijÞ þ CðsÞij Þ; latðCijÞ 6 p

2
� CðsÞij ;

2p otherwise;

(
ð15Þ
where
circðaÞ ¼
aþ 2p if a < 0;

a if a P 0 and a < 2p;

a� 2p if a > 2p:

8><>: ð16Þ
The above formulas enforce the requirement that the circle’s range of latitude is [0,p/2] and the longitude
range is [0, 2p].

Suppose Cik is in the interaction list of Cij. Once we compute the intersection of Cik with Cij, we remove Cij

from the interaction list of Cik so that this pairwise intersection is not computed twice.

2.3. Circle intersection algorithm

For the modified arc method, each circle Cij is checked for intersection with the other circles Cik, accounting
for the fact that these circles may not lie in the same plane. If the union of the resulting intersection arcs recon-
stitutes Cij completely, then circle Cij is covered. Alternatively, if the intersections of the complements of the
intersection arcs is empty, then the circle is covered. This leads to a more efficient method for determining cir-
cle coverage, described below.
Fig. 4. How one circle can cover another circle without intersecting it.
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2.3.1. Intersection of two circles – preliminaries

If nik · nij = 0 then Cik is parallel to Cij and a check is done to see if Cik covers Cij using
dCijk � nik 6 0) Cij is covered; ð17Þ

where dCijk = cik � cij. Observe that this check must be done even when the circles do not intersect, as shown
in Fig. 4.

If the circles are not parallel, then their planes intersect, in which case we find the line of intersection
Lijk of the two planes. Knowledge of Lijk allows us to determine if the circles themselves intersect, and if
so, what are the points of intersection. The equations of the planes of the two circles in point-direction
form are:
nij � ðr� hcð1Þij ; c
ð2Þ
ij ; c

ð3Þ
ij iÞ ¼ 0;

nik � ðr� hcð1Þik ; c
ð2Þ
ik ; c

ð3Þ
ik iÞ ¼ 0;

ð18Þ
where r = Æx,y,zæ. A parametric equation for Lijk is given by
r ¼ auijk þ pijk; ð19Þ
where a is a scalar parameter, uijk is a direction vector, and pijk is a point on the line Lijk. Observe that
uijk = nij · nik.

The solution for pijk can be found by two methods. The first is by determining where Lijk intersects one
of the global principal coordinate planes x = 0, y = 0, or z = 0. The second is by intersecting the planes
containing the centers of sphere Si and the circles Cij and Cik. It turns out the first method is faster but more
complicated to code, while the second method is slower but simpler to code. We include a discussion of both
methods here and leave the choice to the reader. Each method for pijk has its own associated method for find-
ing the intersection points with the two circles, which we also detail. The goal of the next two subsections is to
find angles a1 and a2 in circle Cij’s angle coordinates which represent the points of intersection of circles Cij and
Cik.

If the circles intersect at less than two points, then we must check if circle Cik covers Cij by virtue of its 3D
orientation in space using relation (17).

The computations of the next two subsections are described with reference to circle Cij, but also apply to
circle Cik with no substantive changes.

2.3.2. Intersection of two circles – method 1

Throughout this section, we will define numerous intermediate quantities which should have subscripts of
ij, ik or ijk, but which we will eliminate for clarity. Any code implementation of these ideas must be cognizant
of these dependencies.

If we let
ha1; b1; c1i ¼ nij; ð20Þ
d1 ¼ �nij � cij; ð21Þ
then from Eq. (18) an equation for the plane of circle Cij is
ha1; b1; c1i � rþ d1 ¼ 0: ð22Þ

Similarly, if we let
ha2; b2; c2i ¼ nik; ð23Þ
d2 ¼ �nik � cik: ð24Þ
then an equation for the plane of circle Cik is
ha2; b2; c2i � rþ d2 ¼ 0: ð25Þ

The following pseudo-code describes how to find the point pijk where Lijk crosses one of the global principal
coordinate planes x = 0, y = 0, or z = 0.
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if uz = 0 (Lijk does not cross the X–Y plane), then

if ux = 0 (Lijk does not cross Y–Z plane), then

px = (c2d1 � d2c1)/(a2c1 � c2a1),
py = 0,
pz = (a1d2 � d1a2)/(a2c1 � c2a1),

else (Lijk crosses Y–Z plane)
px = 0,
px = (c2d1 � d2c1)/(�c2b1 + b2c1),
pz = (�b2d1 + d2b1)/(�c2b1 + b2c1),

else (Lijk crosses X–Y plane)
px = (b2d1 � d2b1)/(�b2a1 + a2b1),
py = (a1d2 � d1a2)/(�b2a1 + a2b1),
pz = 0.

To determine the points of intersection, we change coordinates from 3D global x, y and z to 2D coordinates
x and y local to circle Cij. Then, we solve the 2D problem of finding the intersection between a circle and line in
a plane. We make the following definitions:
mx ¼ uijk � x̂ij; ð26Þ
my ¼ uijk � ŷij; ð27Þ
r1 ¼ pijk � cij; ð28Þ
x0 ¼ r1 � x̂ij; ð29Þ
y0 ¼ r1 � ŷij: ð30Þ
If mx = 0, define a = 1, b = 0, and c = x0, otherwise define a = �mx/my, b = 1, and c = y0 + ax. The equation
of the projected line thus takes the canonical form ax + by = c. The equation of the circle Cij in local coordi-
nates is simply x2 + y2 = r2, where r ¼ CðrÞij is the radius.

There are six possible cases for the intersection of the line Lijk and circle Cij:

(1) b = 0 and r2 � c2

a2 < 0) no intersection.

(2) b = 0 and r2 � c2

a2 ¼ 0) vertical line, one point of intersection:
x1 ¼
c
a
; y1 ¼ 0: ð31Þ
(3) b = 0 and r2 � c2

a2 ¼ 0) vertical line, two points of intersection:
x1 ¼
c
a
; y1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � c2

a2

r
; ð32Þ

x2 ¼
c
a
; y2 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � c2

a2

r
: ð33Þ
(4) b 6¼ 0 and b4r2 � b2c2 + a2r2 b2 < 0) no intersection.
(5) b 6¼ 0 and b4r2 � b2c2 + a2r2b2 = 0) not a vertical line, one point of intersection:
x1 ¼
ac

a2 þ b2
; y1 ¼

�ax1 þ c
b

: ð34Þ
(6) b 6¼ 0 and b4r2 � b2c2 + a2r2b2 > 0) not a vertical line, two points of intersection:
x1 ¼
acþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b4r2 � b2c2 þ a2r2b2

p
a2 þ b2

; y1 ¼
�ax1 þ c

b
; ð35Þ

x2 ¼
ac�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b4r2 � b2c2 þ a2r2b2

p
a2 þ b2

; y2 ¼
�ax2 þ c

b
: ð36Þ
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If there is an intersection, the solutions for x1, y1, x2, and y2 given above for the points of intersection are
converted into angles:
Fig
a1 ¼
cos�1 x1

r

� �
if y1 P 0;

2p� cos�1 x1

r

� �
if y1 < 0;

(
ð37Þ

a2 ¼
cos�1 x2

r

� �
if y2 P 0;

2p� cos�1 x2

r

� �
if y2 < 0:

(
ð38Þ
If a1 > a2, then we swap a1 and a2. This ordering is required for the ambiguity resolution algorithm described
in Section 2.3.4.

2.3.3. Intersection of two circles – method 2

Consider the plane containing the center of the sphere Si and the centers of the circles Cij and Cik. Its inter-
section with sphere Si is portrayed by the large circle in Fig. 5 denoted by Cijk. Circle Cijk and line Lijk intersect
at a single point, which in this method constitutes our solution for pijk. Fig. 6 shows a 2D layout of circle Cijk,
with circles Cij and Cjk shown edge-on as line segments. We make some preliminary definitions for circle Cijk as
follows:
dij ¼ cij � ri; ð39Þ
dik ¼ cik � ri; ð40Þ

nijk ¼
dij � dik

kdij � dikk
; ð41Þ

x̂ijk ¼
dij

kdijk
; ð42Þ

ŷijk ¼ nijk � x̂ijk: ð43Þ
From Fig. 6 the point of intersection Æx,yæ in coordinates local to circle Cij can be computed by setting
hx1; y1i ¼ ðdik � x̂ij; dik � ŷijÞ and
. 5. Nomenclature for circle intersection method 2. The point pijk is the intersection of the planes of circles Cijk, Cij and Cik.



Fig. 6. Finding the intersection point for circle intersection method 2 in the plane of circle Cijk.
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x ¼ kdijk; ð44Þ

y ¼ �x1

y1

ðx� x1Þ þ y1: ð45Þ
We assume y1 is non-zero above because the circles Cij and Cik are assumed not to be parallel. This point of
intersection is then expressed in global coordinates by
pijk ¼ xx̂ijk þ yŷijk þ ri: ð46Þ

We find its local coordinates in the plane of circle Cij using
dijk ¼ pijk � cij; ð47Þ
pij ¼ hx; yi ¼ hdijk � x̂ij; dijk � ŷiji: ð48Þ
To find the angles of the intersection points, consider the plane of circle Cij, shown in Fig. 7. The angles x and
h in the diagram are: !
x ¼ cos�1 r

CðrÞij

; ð49Þ

h ¼
cos�1 x

r

� �
if y P 0;

2p� cos�1 x
r

� �
if y < 0;

(
ð50Þffiffiffiffiffiffiffiffiffiffiffiffiffiffip
where r ¼ x2 þ y2. The angles of intersection are then just:
a1 ¼ h� x; a2 ¼ hþ x: ð51Þ

The derivation above cannot be used if the line Lijk passes through the center of circle Cij. In this exceptional
case, the direction of the line of intersection is determined and the points of intersection with circle Cij are
computed with the aid of Fig. 8:
u ¼ hux; uyi ¼ huijk � x̂ij; uijk � ŷiji; ð52Þ

a1 ¼
cos�1 ux

kuk

� �
if uy P 0;

2p� cos�1 ux
kuk

� �
if uy < 0;

8<: ð53Þ

a2 ¼ modða1 þ p; 2pÞ: ð54Þ
We order the angles of intersection as in method 1: if a1 > a2, then swap a1 and a2.



Fig. 8. Definition of a1 and a2 when Lijk passes through the center of circle Cij.

Fig. 7. Finding a1 and a2 in the plane of circle Cij for circle intersection method 2.
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2.3.4. Resolving ambiguity in circle intersections

If there are two points of intersection for Cij and Cik we must determine which portion of circle Cij is cov-
ered by projecting the normal vector of Cik into the plane of circle Cij (Fig. 9). This projection points to the
part of circle Cij that is covered and is given by:



Fig. 9. Line Lijk divides circle Cij into two parts. The projection w of nik into the plane of circle Cij points to the covered part.
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w ¼ hwx;wyi ¼ hnik � x̂ij; nik � ŷiji: ð55Þ

The angle of the projected normal vector of Cik is
/ ¼
cos�1 wx

kwk

� �
if wy P 0;

2p� cos�1 wx
kwk

� �
if wy < 0:

8><>: ð56Þ
Let Aijk denote the arc on circle Cij due to its intersection with Cik. This arc is assigned an interval on the real
line according to
Aijk ¼
½a1; a2� if / 2 ½a1; a2�;
½a2; a1 þ 2p� if / 62 ½a1; a2�:

�
ð57Þ
2.3.5. Checking coverage of a circle

The circle Cij is covered by its arcs if:
½0; 2pÞ �
[

k

Aijk: ð58Þ
If all the arcs are computed beforehand, an algorithm for making this determination is given in [6] which uses
the quicksort algorithm to order the arcs by their left endpoint. The resulting sorted list of arcs is then checked
for gaps between right endpoints and left endpoints.

We provide here an alternate method of determining coverage using a dynamic linked list that represents
the complement of union of the set of arcs known at any point in time. Thus we can stop mapping arcs to a
circle when we know that the circle is fully covered, and it is not necessary to compute all arcs beforehand. The
linked list is initialized to the whole interval C ¼ ½0; 2pÞ, and when it is empty, the circle is covered. As the
process of finding circle intersections and mapping arcs is time-consuming, the linked-list technique for arc
complements can provide substantial savings in CPU resources. Mathematically, the linked list represents
the intersection of the complements of the arc intervals:
Lij ¼
\

k

ðC � eAijkÞ; ð59Þ
where eAijk is the interval Aijk adjusted to fit inside C:
Aijk ¼ ½a1; a2�; ð60Þ

eAijk ¼
Aijk if a2 < 2p;

½0; a2 � 2p� [ ½a1; 2pÞ if a2 P 2p:

�
ð61Þ



Fig. 10. Example of updating linked list to remove arcs of intersection.
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Mapping arcs to the circle Cij is thus described by successive intersections in Eq. (59):
Lij :¼ Lij \ ðC � eAijkÞ ¼ Lij � eAijk: ð62Þ
From this we see that an update for a new arc will consist of ‘‘cutting out’’ some intervals and parts of inter-
vals contained in the previous linked list iteration. An example of updating the list is given in Fig. 10. Observe
that the linked list is always ordered, in the sense that it always ‘‘points to the right’’. The condition that circle
Cij is covered by arcs (Eq. (58)) is that the linked list be empty:
Lij ¼ ; () Cij is covered: ð63Þ
Each update to the linked list requires finding intervals within it that contain the left and right endpoints of the
new arc. A naive search procedure for finding these intervals would produce a running time of O(N2), where N
is the number of arcs. A binary search procedure would reduce this to O(N logN), which is the same as for the
quicksort method of [6]. In this case we expect on average that the linked list method will be faster than the
quicksort method since the linked list method terminates as soon as the list becomes empty.
3. Examples and timing

The above boundary detection algorithm was implemented in the SPHINX hydrodynamic code [8] and
tested on a cube (Fig. 11), a sphere (Fig. 12), and two cylinders (Fig. 13). Each problem was run for five time



Fig. 11. Results of boundary detection on a cube. Red points are on boundary, blue are in interior. Spacing was 1 � h. Only center points
are shown. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Results of boundary detection on a sphere. Red points are on boundary, blue are in interior. Spacing was 1 � h. Only center
points are shown. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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Fig. 13. Results of boundary detection on two cylinders. Red points are on boundary, blue are in interior. Spacing was 1 � h. Only center
points are shown. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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steps in order to average out the timings for each application of the algorithm. The three-dimensional expo-
sure method correctly determines the boundary in all cases.

An upper bound for run time of the algorithm is O(MN2), where M is the total number of particles and N is
the average number of neighbors per particle, and is less favorable than O(MN logN) obtained for two dimen-
sions. The plot in Fig. 14 confirms that the algorithm is linear in the total number of particles. The two cyl-
inders test case was used, increasing the number of particles while keeping the number of neighbors per
particle approximately the same. The run time was averaged over five time steps.

In Fig. 15 the average time finding the boundary for each particle is plotted against the average number of
neighbors per particle. The run times vary with the shape of the object, due to the different surface to volume
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Fig. 14. Plot of run time vs. number of particles with number of neighbors held constant.

20 40 60 80 100 120 140 160 180
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

neighbors/particle

se
co

nd
s/

pa
rti

cl
e

Timings for different shapes

2cylinders 
sphere
cube

Fig. 15. Run time for different shapes.

Table 1
Exponents

Shape k (·10�6) �

2 cylinders 4.81 1.62
Sphere 3.77 1.67
Cube 4.33 1.64
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Fig. 16. Circle intersection method 1 vs. method 2.
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ratios of the shapes. The different numbers of neighbors were obtained by varying the smoothing length. The
run times were averaged over the number of particles because the different shapes contain different numbers of
particles and are modeled by kN�, where N is the number of neighbors and k and � are constants. Table 1 gives
a least squares fit of the data in Fig. 15 for k and �. The observed values of � 2 [1.6,1.7] are better than the
predicted value of � = 2, due probably to the measures introduced in Sections 2.2 and 2.3.5 for reducing
the number of circle intersections computed.

The run times for the two methods of computing the intersections of circles described in Sections 2.3.2
and 2.3.3 are compared in Fig. 16. Method 1 is asymptotically slightly faster than method 2. The runs used
1000 particles while varying the average number of neighbors per particle and again averaging over 5 time
steps.

A time sequence from a ball and plate impact simulation similar to that presented in Ref. [6] is shown in
point-cloud representation in Fig. 17. The red points are boundary points selected by the 3D exposure method
and the blue points are interior. In Fig. 18 a cut-away of the set of spheres of radius 0.5-h from a single time-
step in this simulation is shown. The ability to dynamically detect void opening and closure is shared with that
demonstrated by the two-dimensional method of Ref. [6].

The technique for computing geometric boundary normals given in Ref. [6] also applies to the present
three-dimensional algorithm. The geometric normal is given by
nðxiÞ ¼ �
X
j 62B
r/S

j ðxiÞ; i 2 B ð64Þ

/S
i ðxÞ ¼ W iðxÞ

	X
j 62B

W jðxÞ; ð65Þ
where B is the set of all boundary particle indices and Wi is the smoothing kernel centered at particle i. Fig. 19
shows a time step of the same ball-and-plate simulation rendered in a surface representation where a disk is
drawn perpendicular to the above normal and displaced from the center of the sphere a distance of 0.5 h. Inte-
rior particles are not shown.



The time to make the boundary identification using the new 3D exposure method in these



Fig. 18. Cut-away of 3D ball-on-plate impact simulation.

Fig. 19. Representation of boundary normals by hexagonal disks.
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